3.3.71 \(\int \frac {(d+e x^2)^{3/2} (a+b \log (c x^n))}{x^4} \, dx\) [271]

3.3.71.1 Optimal result
3.3.71.2 Mathematica [C] (verified)
3.3.71.3 Rubi [A] (verified)
3.3.71.4 Maple [F]
3.3.71.5 Fricas [F]
3.3.71.6 Sympy [F]
3.3.71.7 Maxima [F(-2)]
3.3.71.8 Giac [F]
3.3.71.9 Mupad [F(-1)]

3.3.71.1 Optimal result

Integrand size = 25, antiderivative size = 400 \[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx=-\frac {4 b e n \sqrt {d+e x^2}}{3 x}-\frac {b n \left (d+e x^2\right )^{3/2}}{9 x^3}+\frac {4 b e^{3/2} n \sqrt {d+e x^2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 \sqrt {d} \sqrt {1+\frac {e x^2}{d}}}+\frac {b e^{3/2} n \sqrt {d+e x^2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 \sqrt {d} \sqrt {1+\frac {e x^2}{d}}}-\frac {b e^{3/2} n \sqrt {d+e x^2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{\sqrt {d} \sqrt {1+\frac {e x^2}{d}}}-\frac {e \sqrt {d+e x^2} \left (a+b \log \left (c x^n\right )\right )}{x}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 x^3}+\frac {e^{3/2} \sqrt {d+e x^2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} \sqrt {1+\frac {e x^2}{d}}}-\frac {b e^{3/2} n \sqrt {d+e x^2} \operatorname {PolyLog}\left (2,e^{2 \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{2 \sqrt {d} \sqrt {1+\frac {e x^2}{d}}} \]

output
-1/9*b*n*(e*x^2+d)^(3/2)/x^3-1/3*(e*x^2+d)^(3/2)*(a+b*ln(c*x^n))/x^3-4/3*b 
*e*n*(e*x^2+d)^(1/2)/x-e*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2)/x+4/3*b*e^(3/2)*n 
*arcsinh(x*e^(1/2)/d^(1/2))*(e*x^2+d)^(1/2)/d^(1/2)/(1+e*x^2/d)^(1/2)+1/2* 
b*e^(3/2)*n*arcsinh(x*e^(1/2)/d^(1/2))^2*(e*x^2+d)^(1/2)/d^(1/2)/(1+e*x^2/ 
d)^(1/2)-b*e^(3/2)*n*arcsinh(x*e^(1/2)/d^(1/2))*ln(1-(x*e^(1/2)/d^(1/2)+(1 
+e*x^2/d)^(1/2))^2)*(e*x^2+d)^(1/2)/d^(1/2)/(1+e*x^2/d)^(1/2)+e^(3/2)*arcs 
inh(x*e^(1/2)/d^(1/2))*(a+b*ln(c*x^n))*(e*x^2+d)^(1/2)/d^(1/2)/(1+e*x^2/d) 
^(1/2)-1/2*b*e^(3/2)*n*polylog(2,(x*e^(1/2)/d^(1/2)+(1+e*x^2/d)^(1/2))^2)* 
(e*x^2+d)^(1/2)/d^(1/2)/(1+e*x^2/d)^(1/2)
 
3.3.71.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.50 (sec) , antiderivative size = 269, normalized size of antiderivative = 0.67 \[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx=\frac {b d n \sqrt {d+e x^2} \left (-\operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{2},-\frac {1}{2},-\frac {e x^2}{d}\right )-3 \left (1+\frac {e x^2}{d}\right )^{3/2} \log (x)\right )}{9 x^3 \sqrt {1+\frac {e x^2}{d}}}+\frac {b e n \sqrt {d+e x^2} \left (-\, _3F_2\left (-\frac {1}{2},-\frac {1}{2},-\frac {1}{2};\frac {1}{2},\frac {1}{2};-\frac {e x^2}{d}\right )-\sqrt {1+\frac {e x^2}{d}} \log (x)+\frac {\sqrt {e} x \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log (x)}{\sqrt {d}}\right )}{x \sqrt {1+\frac {e x^2}{d}}}-\frac {\sqrt {d+e x^2} \left (d+4 e x^2\right ) \left (a-b n \log (x)+b \log \left (c x^n\right )\right )}{3 x^3}+e^{3/2} \left (a-b n \log (x)+b \log \left (c x^n\right )\right ) \log \left (e x+\sqrt {e} \sqrt {d+e x^2}\right ) \]

input
Integrate[((d + e*x^2)^(3/2)*(a + b*Log[c*x^n]))/x^4,x]
 
output
(b*d*n*Sqrt[d + e*x^2]*(-Hypergeometric2F1[-3/2, -3/2, -1/2, -((e*x^2)/d)] 
 - 3*(1 + (e*x^2)/d)^(3/2)*Log[x]))/(9*x^3*Sqrt[1 + (e*x^2)/d]) + (b*e*n*S 
qrt[d + e*x^2]*(-HypergeometricPFQ[{-1/2, -1/2, -1/2}, {1/2, 1/2}, -((e*x^ 
2)/d)] - Sqrt[1 + (e*x^2)/d]*Log[x] + (Sqrt[e]*x*ArcSinh[(Sqrt[e]*x)/Sqrt[ 
d]]*Log[x])/Sqrt[d]))/(x*Sqrt[1 + (e*x^2)/d]) - (Sqrt[d + e*x^2]*(d + 4*e* 
x^2)*(a - b*n*Log[x] + b*Log[c*x^n]))/(3*x^3) + e^(3/2)*(a - b*n*Log[x] + 
b*Log[c*x^n])*Log[e*x + Sqrt[e]*Sqrt[d + e*x^2]]
 
3.3.71.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 312, normalized size of antiderivative = 0.78, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2786, 2792, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx\)

\(\Big \downarrow \) 2786

\(\displaystyle \frac {d \sqrt {d+e x^2} \int \frac {\left (\frac {e x^2}{d}+1\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4}dx}{\sqrt {\frac {e x^2}{d}+1}}\)

\(\Big \downarrow \) 2792

\(\displaystyle \frac {d \sqrt {d+e x^2} \left (-b n \int \left (\frac {e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{d^{3/2} x}-\frac {\left (4 e x^2+d\right ) \sqrt {\frac {e x^2}{d}+1}}{3 d x^4}\right )dx+\frac {e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^{3/2}}-\frac {e \sqrt {\frac {e x^2}{d}+1} \left (a+b \log \left (c x^n\right )\right )}{d x}-\frac {\left (\frac {e x^2}{d}+1\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 x^3}\right )}{\sqrt {\frac {e x^2}{d}+1}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {d \sqrt {d+e x^2} \left (\frac {e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{d^{3/2}}-\frac {e \sqrt {\frac {e x^2}{d}+1} \left (a+b \log \left (c x^n\right )\right )}{d x}-\frac {\left (\frac {e x^2}{d}+1\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{3 x^3}-b n \left (\frac {e^{3/2} \operatorname {PolyLog}\left (2,e^{2 \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{2 d^{3/2}}-\frac {e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )^2}{2 d^{3/2}}-\frac {4 e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{3 d^{3/2}}+\frac {e^{3/2} \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \log \left (1-e^{2 \text {arcsinh}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}\right )}{d^{3/2}}+\frac {4 e \sqrt {\frac {e x^2}{d}+1}}{3 d x}+\frac {\left (\frac {e x^2}{d}+1\right )^{3/2}}{9 x^3}\right )\right )}{\sqrt {\frac {e x^2}{d}+1}}\)

input
Int[((d + e*x^2)^(3/2)*(a + b*Log[c*x^n]))/x^4,x]
 
output
(d*Sqrt[d + e*x^2]*(-((e*Sqrt[1 + (e*x^2)/d]*(a + b*Log[c*x^n]))/(d*x)) - 
((1 + (e*x^2)/d)^(3/2)*(a + b*Log[c*x^n]))/(3*x^3) + (e^(3/2)*ArcSinh[(Sqr 
t[e]*x)/Sqrt[d]]*(a + b*Log[c*x^n]))/d^(3/2) - b*n*((4*e*Sqrt[1 + (e*x^2)/ 
d])/(3*d*x) + (1 + (e*x^2)/d)^(3/2)/(9*x^3) - (4*e^(3/2)*ArcSinh[(Sqrt[e]* 
x)/Sqrt[d]])/(3*d^(3/2)) - (e^(3/2)*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]^2)/(2*d^( 
3/2)) + (e^(3/2)*ArcSinh[(Sqrt[e]*x)/Sqrt[d]]*Log[1 - E^(2*ArcSinh[(Sqrt[e 
]*x)/Sqrt[d]])])/d^(3/2) + (e^(3/2)*PolyLog[2, E^(2*ArcSinh[(Sqrt[e]*x)/Sq 
rt[d]])])/(2*d^(3/2)))))/Sqrt[1 + (e*x^2)/d]
 

3.3.71.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2786
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^ 
(q_), x_Symbol] :> Simp[d^IntPart[q]*((d + e*x^2)^FracPart[q]/(1 + (e/d)*x^ 
2)^FracPart[q])   Int[x^m*(1 + (e/d)*x^2)^q*(a + b*Log[c*x^n]), x], x] /; F 
reeQ[{a, b, c, d, e, n}, x] && IntegerQ[m/2] && IntegerQ[q - 1/2] &&  !(LtQ 
[m + 2*q, -2] || GtQ[d, 0])
 

rule 2792
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x] 
}, Simp[(a + b*Log[c*x^n])   u, x] - Simp[b*n   Int[SimplifyIntegrand[u/x, 
x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2] 
) || InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x 
] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0])
 
3.3.71.4 Maple [F]

\[\int \frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \ln \left (c \,x^{n}\right )\right )}{x^{4}}d x\]

input
int((e*x^2+d)^(3/2)*(a+b*ln(c*x^n))/x^4,x)
 
output
int((e*x^2+d)^(3/2)*(a+b*ln(c*x^n))/x^4,x)
 
3.3.71.5 Fricas [F]

\[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {3}{2}} {\left (b \log \left (c x^{n}\right ) + a\right )}}{x^{4}} \,d x } \]

input
integrate((e*x^2+d)^(3/2)*(a+b*log(c*x^n))/x^4,x, algorithm="fricas")
 
output
integral(((b*e*x^2 + b*d)*sqrt(e*x^2 + d)*log(c*x^n) + (a*e*x^2 + a*d)*sqr 
t(e*x^2 + d))/x^4, x)
 
3.3.71.6 Sympy [F]

\[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx=\int \frac {\left (a + b \log {\left (c x^{n} \right )}\right ) \left (d + e x^{2}\right )^{\frac {3}{2}}}{x^{4}}\, dx \]

input
integrate((e*x**2+d)**(3/2)*(a+b*ln(c*x**n))/x**4,x)
 
output
Integral((a + b*log(c*x**n))*(d + e*x**2)**(3/2)/x**4, x)
 
3.3.71.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx=\text {Exception raised: ValueError} \]

input
integrate((e*x^2+d)^(3/2)*(a+b*log(c*x^n))/x^4,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.71.8 Giac [F]

\[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{\frac {3}{2}} {\left (b \log \left (c x^{n}\right ) + a\right )}}{x^{4}} \,d x } \]

input
integrate((e*x^2+d)^(3/2)*(a+b*log(c*x^n))/x^4,x, algorithm="giac")
 
output
integrate((e*x^2 + d)^(3/2)*(b*log(c*x^n) + a)/x^4, x)
 
3.3.71.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^{3/2} \left (a+b \log \left (c x^n\right )\right )}{x^4} \, dx=\int \frac {{\left (e\,x^2+d\right )}^{3/2}\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{x^4} \,d x \]

input
int(((d + e*x^2)^(3/2)*(a + b*log(c*x^n)))/x^4,x)
 
output
int(((d + e*x^2)^(3/2)*(a + b*log(c*x^n)))/x^4, x)